Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(6): e2307306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063838

RESUMO

Progress in magnetoelectric materials is hindered by apparently contradictory requirements for time-reversal symmetry broken and polar ferroelectric electronic structure in common ferromagnets and antiferromagnets. Alternative routes can be provided by recent discoveries of a time-reversal symmetry breaking anomalous Hall effect (AHE) in noncollinear magnets and altermagnets, but hitherto reported bulk materials are not polar. Here, the authors report the observation of a spontaneous AHE in doped AgCrSe2 , a layered polar semiconductor with an antiferromagnetic coupling between Cr spins in adjacent layers. The anomalous Hall resistivity 3 µ Ω c m $\mu \Omega \, \textnormal {cm}$ is comparable to the largest observed in compensated magnetic systems to date, and is rapidly switched off when the angle of an applied magnetic field is rotated to ≈80° from the crystalline c-axis. The ionic gating experiments show that the anomalous Hall conductivity magnitude can be enhanced by modulating the p-type carrier density. They also present theoretical results that suggest the AHE is driven by Berry curvature due to noncollinear antiferromagnetic correlations among Cr spins, which are consistent with the previously suggested magnetic ordering in AgCrSe2 . The results open the possibility to study the interplay of magnetic and ferroelectric-like responses in this fascinating class of materials.

2.
Nat Phys ; 14(9): 918-924, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30349581

RESUMO

The mathematical field of topology has become a framework to describe the low-energy electronic structure of crystalline solids. A typical feature of a bulk insulating three-dimensional topological crystal are conducting two-dimensional surface states. This constitutes the topological bulk-boundary correspondence. Here, we establish that the electronic structure of bismuth, an element consistently described as bulk topologically trivial, is in fact topological and follows a generalized bulk-boundary correspondence of higher-order: not the surfaces of the crystal, but its hinges host topologically protected conducting modes. These hinge modes are protected against localization by time-reversal symmetry locally, and globally by the three-fold rotational symmetry and inversion symmetry of the bismuth crystal. We support our claim theoretically and experimentally. Our theoretical analysis is based on symmetry arguments, topological indices, first-principle calculations, and the recently introduced framework of topological quantum chemistry. We provide supporting evidence from two complementary experimental techniques. With scanning-tunneling spectroscopy, we probe the unique signatures of the rotational symmetry of the one-dimensional states located at step edges of the crystal surface. With Josephson interferometry, we demonstrate their universal topological contribution to the electronic transport. Our work establishes bismuth as a higher-order topological insulator.

3.
Sci Adv ; 4(6): eaat0346, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29869644

RESUMO

Three-dimensional topological (crystalline) insulators are materials with an insulating bulk but conducting surface states that are topologically protected by time-reversal (or spatial) symmetries. We extend the notion of three-dimensional topological insulators to systems that host no gapless surface states but exhibit topologically protected gapless hinge states. Their topological character is protected by spatiotemporal symmetries of which we present two cases: (i) Chiral higher-order topological insulators protected by the combination of time-reversal and a fourfold rotation symmetry. Their hinge states are chiral modes, and the bulk topology is Z2 -classified. (ii) Helical higher-order topological insulators protected by time-reversal and mirror symmetries. Their hinge states come in Kramers pairs, and the bulk topology is Z -classified. We provide the topological invariants for both cases. Furthermore, we show that SnTe as well as surface-modified Bi2TeI, BiSe, and BiTe are helical higher-order topological insulators and propose a realistic experimental setup to detect the hinge states.

4.
Nat Commun ; 8: 14176, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120823

RESUMO

While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. By analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. Our method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenides such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W-1. Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells.

5.
Phys Rev Lett ; 113(7): 077203, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25170730

RESUMO

Experiments demonstrating the controlled growth of oxide heterostructures have raised the prospect of realizing topologically nontrivial states of correlated electrons in low dimensions. Here, we study heterostructures consisting of {111} bilayers of double perovskites separated by inert band insulators. In bulk, these double perovskites have well-defined local moments interacting with itinerant electrons leading to high temperature ferromagnetism. Incorporating spin-orbit coupling in the two-dimensional honeycomb geometry of a {111} bilayer, we find a rich phase diagram with tunable ferromagnetic order, topological Chern bands, and a C=±2 Chern insulator regime. Our results are of broad relevance to oxide materials such as Sr_{2}FeMoO_{6}, Ba_{2}FeReO_{6}, and Sr_{2}CrWO_{6}.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...